首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1952篇
  免费   182篇
  国内免费   349篇
化学   2016篇
晶体学   43篇
力学   4篇
综合类   21篇
数学   2篇
物理学   397篇
  2024年   2篇
  2023年   32篇
  2022年   56篇
  2021年   57篇
  2020年   96篇
  2019年   71篇
  2018年   62篇
  2017年   85篇
  2016年   79篇
  2015年   85篇
  2014年   91篇
  2013年   186篇
  2012年   148篇
  2011年   108篇
  2010年   103篇
  2009年   114篇
  2008年   118篇
  2007年   157篇
  2006年   110篇
  2005年   102篇
  2004年   118篇
  2003年   93篇
  2002年   71篇
  2001年   48篇
  2000年   44篇
  1999年   33篇
  1998年   29篇
  1997年   34篇
  1996年   24篇
  1995年   31篇
  1994年   13篇
  1993年   20篇
  1992年   13篇
  1991年   7篇
  1990年   10篇
  1989年   10篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有2483条查询结果,搜索用时 265 毫秒
81.
This paper reports on the preparation and features of a UV light dosimeter composed of nitro blue tetrazolium chloride (NBT) and polyamide woven fabric. This textile dosimeter is based on the conversion reaction of NBT into formazan, which was initially examined in aerated aqueous solutions through steady state UV irradiation. Irradiated solutions change their colour as a consequence of the formation of polydisperse NBT formazan particles. This was analysed in relation to the absorbed dose of UV light through UV–VIS spectrophotometry and dynamic laser light scattering measurements. When NBT substrate molecules are embedded in polyamide textile, UV irradiation leads to similar effects as in solution. However, the tinge intensity changes at much lower absorbed doses. The dependence of the tinge intensity on the absorbed dose was followed by measurements of the remission of light from the NBT-polyamide samples. Consequently, the calibration parameters were calculated such as the dose sensitivity, dose range, and quasi-linear dose range. An improvement of the NBT-polyamide samples by application of a colour levelling agent and improvement of their resistance to humidity is presented. Finally, the samples were used for estimation of absorbed UV energy distribution showing their capability as new dosimeters for in-plane high resolution radiation dose measurements.  相似文献   
82.
To remove methylene blue dye from water by adsorption, bentonites were modified by polyhedral oligomeric silsesquioxane (POSS) and three kind of quaternary ammonium surfactants (dodecyl trimethyl ammonium bromide, tetrabutyl ammonium bromide, cetyl trimethylammonium bromide) in aqueous solution. Systematic adsorption experiments were carried out, the adsorption mechanism was studied, and the factors governing the adsorption of methylene blue on modified bentonite were discussed. The adsorption capacity of methylene blue on all three modified bentonites in 1000 mg·L−1 solutions quickly reached equilibrium within 2000 s, and the removal rate was basically 100%; however, the removal rate in raw bentonite samples was only 60%. The pseudo second-order kinetic model can provide satisfactory kinetic data fitting. The obtained adsorption isotherms fit well with the Dubinin-Radushkevich isotherm model. The thermodynamic results showed that the adsorption process was a spontaneous endothermic physical adsorption process. With increasing pH and KCl concentration, the removal of methylene blue increased significantly. The results of this study confirmed that the modified bentonite is a candidate material as a cationic dye adsorbent.  相似文献   
83.
In this study, spectroelectrochemical (SPE) studies to monitor the electrochromic properties of electrochemically synthesized sub‐10 nm sized Prussian blue (PB) nanostructures (NSs) are employed. At the beginning the dark blue coloured device, shifts reversibly between translucent and dark‐blue while applying an applied bias between +1 to ?1 V with an opposite polarization. Amine functionalized silicate sol‐gel matrix (SSG) is used as a solid support and stabilizer for electrodepositing highly uniform sub‐10 nm PB NSs. The SSG's film thickness is suitably optimized through suitable controlled experiments. It is found that the SPE behaviour of sub‐10 nm sized PB NSs, suitably followed a colour modulation of PB into Prussian white (PW) and vice‐versa. SPE studies are used to investigate the redox switching between the PB and PW and which are responsible for an electrochromic function of a fabricated electrochromic device (ECD). Fabricated ECD has demonstrated an optical modulation at 680 nm with the moderate coloration efficiency of 115.8 cm2/C. Present study validates the SPE feature of sub‐10 nm PB NSs as an active electrochromic nanomaterial and demonstrating the applicability of SPE technique to investigate the variety of electrochromic nanomaterials, with consequences in both spectral and electrochemically active nanomaterials for electrochromic device applications.  相似文献   
84.
Prussian blue (PB) is an electrochromic material, which can be used as a signal transducer in the formation of optical urea biosensors. The previous researches in electrochromic properties of PB demonstrated the optical PB response to ammonium ions, which occurs when ammonium ions are interacting with PB layer at a constant 0.2 V vs Ag|AgCl|KClsat potential. In this work PB optical dependence on ammonium ions concentration was applied in the formation of electrochromic urea biosensor. Biosensor was formed by modifying the optically transparent indium tin oxide (ITO) coated glass electrode (glass/ITO) with Prussian blue layer and immobilizing urease (glass/ITO/PB‐urease). Calibration curve showed the linear dependency (R2=0.995) between the change of maximal absorbance (ΔA) and urea concentration in concentration range varying from 3 mM to 30 mM. The highest sensitivity (4 ΔA M?1) of glass/ITO/PB‐urease biosensor is in the concentration range from 7 mM to 30 mM. It was determined that working principle of the glass/ITO/PB‐urease biosensor is not related to pH changes occurring during enzymatic hydrolysis of urea.  相似文献   
85.
Membrane‐based reverse electrodialysis (RED) is considered as the most promising technique to harvest osmotic energy. However, the traditional membranes are limited by high internal resistance and low efficiency, resulting in undesirable power densities. Herein, we report the combination of oppositely charged Ti3C2Tx MXene membranes (MXMs) with confined 2D nanofluidic channels as high‐performance osmotic power generators. The negatively or positively charged 2D MXene nanochannels exhibit typical surface‐charge‐governed ion transport and show excellent cation or anion selectivity. By mixing the artificial sea water (0.5 m NaCl) and river water (0.01 m NaCl), we obtain a maximum power density of ca. 4.6 Wm?2, higher than most of the state‐of‐the‐art membrane‐based osmotic power generators, and very close to the commercialization benchmark (5 Wm?2). Through connecting ten tandem MXM‐RED stacks, the output voltage can reach up 1.66 V, which can directly power the electronic devices.  相似文献   
86.
In vivo detection of cellular senescence is accomplished by using mesoporous silica nanoparticles loaded with the NIR‐FDA approved Nile blue (NB) dye and capped with a galactohexasaccharide ( S3 ). NB emission at 672 nm is highly quenched inside S3 , yet a remarkable emission enhancement is observed upon cap hydrolysis in the presence of β‐galactosidase and dye release. The efficacy of the probe to detect cellular senescence is tested in vitro in melanoma SK‐Mel‐103 and breast cancer 4T1 cells and in vivo in palbociclib‐treated BALB/cByJ mice bearing breast cancer tumor.  相似文献   
87.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue‐emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three‐dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band‐edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self‐trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non‐perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   
88.
《Arabian Journal of Chemistry》2020,13(12):8626-8637
Hydroxyapatite (HAP) containing different contents of palladium (Pd) ions were synthesized using the co-precipitation method. The structural and morphological properties of the as-synthesized compositions were investigated using XRD and FESEM. The c/a increased from 0.728 to 0.733 with the lowest and highest contributions of Pd(II), respectively. Furthermore, the morphological features were investigated using FESEM. It was illustrated that Pd-HAP was formed as agglomerated as rod shapes with dimensions in the range of 63.4–110.3 nm for no Pd additions, and the size was reduced reaching 43.4–70.5 nm for the highest Pd contribution. Besides, the maximum height of the roughness (Rt) grew from 183.6 up to 236.5 nm for the lowest and highest Pd(II). Besides, the obtained specific surface area was around 28.3, 42.0, and 63.4 m2/g for 0.0Pd-HAP, 0.6Pd-HAP, and 1.0Pd-HAP, respectively. The antibacterial activity was examined against both Escherichia coli (E-coli) and Staphylococcus aureus (S. aureus), and it obvious that the activity was enhanced upon Pd content. The inhibition zone was increased from no sensitivity reaching 4.3 ± 0.9 and 4.5 ± 0.8 mm for no Pd and the highest one, respectively. The removal efficiency of dyes was examined for methylene blue (MB) and it was shown that after 120 min of irradiation, the removal efficiency reached around 86.4% for the highest contribution of Pd. The pseudo-first-order constant (Kapp) increased from 0.0032 to 0.0179 min−1. The recyclability of Pd-HAP denoted that removal efficiency decreased to 5.65, 8.14, 6.24, 8.76, and 10.2% for different contents of Pd(II) after 6 cycles.  相似文献   
89.
The optical limiting properties of acid blue29 solutions in different solvents are investigated. Experiments are performed using a CW He-Ne Laser beam at 632.8 nm wavelength and 35 mW power. The strength of the optical limiting action is dramatically influenced by the solvent. Multiple diffraction rings were observed when the samples were exposed to laser radiation. The effect of concentration, solvent and laser intensity on the diffraction rings are studied experimentally. Our results show that the nonlinear refraction is the dominant mechanism to explain the optical limiting behavior in acid blue29.  相似文献   
90.
The novel visible-light-activated La/I/TiO2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号